IT業界社群及資訊平台

【壓力爆煲】人工智能結合大數據分析 提升斷症準確度紓緩人手不足

醫療事故不時涉及人為失誤,特別在香港的公營醫療體制下,前線經常人手不足,而為應付每天上門的大量病人,醫生亦無足夠時間詳細為病人問症,令病人接受不到適合治療的機會大增。結合人工智能 (AI) 及大數據分析,就可大大紓緩醫療機構的人手壓力,並提升各種病症的確診機會。

現時各種病症診斷,主要仍依賴醫生的經驗,雖然各種影像檢查技術如磁力共振 (MRI)、電腦掃描 (CT-SCAN)、正電子電腦掃描 (PET-SCAN) 均發展迅速,有助發現微細的徵狀,但最終醫生還須配合病人的病歷、家族遺傳等風險因素作評估,以決定整個治療方案。以癌症為例,影像檢查雖可及早發現微細的細胞異變,但部分器官位置如鼻咽、乳腺等腫瘤發展可以非常快速,再加上部分影像檢查始終有一定的輻射量,不能經常安排病人進行檢查,導致病人有可能延醫。

人工智能及大數據分析,便有助醫生及早找出高風險病人以便密切監察。研究員可以將病人資料庫的數據匯入系統,分析出不同的風險指數,包括年齡、性別、家族遺傳、運動量、生活習慣等,同樣以治療癌症為例,即使新求診的病人未有在影像檢查出發現異常,但如其病歷被人工智能系統判斷為高風險,便可安排病人進行後續檢查,盡早發現異變;如病人屬低風險則可安排較長的覆診期,紓緩醫療機構的工作壓力。IBM 的人工智能系統 Watson Genomics,便在乳癌、心臟病等病症評估上有很大的貢獻。

除此之外,穿戴科技如智能手表的普及,亦有助一般人及早找出潛在病症。通過收集及分析大量使用者的健康數據,同樣可讓人工智能系統識別各種健康指標,家庭醫生只要運用適當的工具,便可更準確發現求診者的異常之處,例如求診者的身體機能有否比同年齡層人士差,令醫生可以在「望聞問切」的傳統斷症方法上,得到更有力的數據支持。

資料來源:http://bit.ly/398yPgc