Browsing: AI

    最近睇過一篇文章,內容是講述「人腦」和「機器」應該如何分工做判斷。先講 20 年前,分工大致是:機器負責基本計算、存儲記錄、資料傳輸;人類就負責做分析和決策。現今電腦運算能力提升,究竟「分析」和「決策」,由機器還是人腦處理比較出色呢?這並不是簡單一個 Yes 或 No 的答案,而應是「人腦」和「機器」兩者如何分工和重新定位的問題。 人類判斷有兩套系統 首先,人類是如何作出判斷,簡單來說:有兩套系統。 「系統一」是憑直覺及過往經驗,也是人腦的強項。「系統二」是靠資料來演算,就是機器的優勢所在。大量證據顯示,若有得選擇的話,單靠「系統二」得到的決策和預測(即是全由機器來決定),通常比「系統一」的判斷更優勝。 機器判斷更優勝 點解?因為即使資料不足或 algorithm 尚欠成熟,要作出修改實在不難,也可隨時再演算一次。但要推翻最高領導的主觀決定,就複雜得多了。所以,奉勸各位領導,如果是機器可以處理的判斷,就應由機器去處理。天氣預測就是一個好例子,每日每分每秒大量的不同的氣象數據,由電腦機器預測出來的天氣,肯定比氣象學家來得準確。 不要依賴最高領導人 在這似乎講到人腦決策價值不大,當然不是啦。在某些情況中,仍然應該運用人類主觀判斷,只是比重倒轉(把你的主觀判斷,量化成機器決定的參數),或去處理一些更深層問題。隨著科技發展與普及,我們要擺脫對機器作為主導分析的抗拒,更不要依賴最高領導人的決定,因為機器的判斷不會比他們差呢。

    中國的大型科技公司:百度、阿里巴巴和騰訊(統稱為 BAT)這三巨頭正努力把自己定位成為 Smart City 解決方案領導者,並希望打造自身為──自動駕駛、語音對話式 AI、面部識別技術、預測性醫療保健方面等的全球領導者。 BAT 的優勢 BAT 有資金和資源,除了積極擴展到亞洲其他國家,正努力招募外國人才,並投資外國的 AI 創業公司,形成全球合作夥伴關係。再加上中國市場有得天獨厚的 AI 應用的條件,包括人口龐大、數據量大、科技人才湧現、廣泛電子商貿應用,更有大量物聯網設備也在中國生產。綜合起來,會給予 BAT 在打造 AI 平台的優勢。 BAT 面臨的最大挑戰…

    人工智能(Artificial Intelligence A.I.)大概有以下範疇:機器學習 Machine Learning、自然語言處理 Natural Language Processing、自動機學 Robotics 等。透過深度、多層的學習模式,人工智能可以為人類處理大量信息並作預測及自主行動,包括預測我今天想吃中餐還是西餐,了解侍應的日常語言,點餐並用自動機餵我吃飯等。早些兒,網上書店憑我的選書行為,已能預測我喜歡哪些書,準確程度令 Neo 有些心驚,覺得對方比 Neo 還了解 Neo。近日 Facebook 與 Cambridge Analytica 的事情,可能只是冰山一角。看著國會議員的問題,我覺得人類很有娛樂性。…