【有錯要改】人工智能疏導交通 無人駕駛汽車減少停車增能源效益

    無人駕駛汽車科技的實驗持續進行,不過大多應用於迴避障礙物及自動導航方面。美國麻省理工大學 (MIT) 一項人工智能研究就專門針對改善自動駕駛系統對交通燈的反應,結果不單改善交通順暢度,更可增加能源效益及減少廢氣排放,一舉兩得。

    主持這次研究的研究員指出,雖然美國及世界其他地方已批准無人駕駛車上路,不過對於人類來說,無人駕駛汽車未能為人類帶來改善,因為乘客依舊受困於交通燈,因此團隊就希望能夠改善它們對交通訊號的反應,提升交通流暢度。研究採用深度強化學習 (deep reinforcement learning) 模式,即交由人工智能以試誤 (trial and error) 方式,通過不同的抉擇覓求最佳的演算法。

    研究團隊首先模擬出一個十字路口場景,然後只提供機器學習無法自行掌握的知識,之後便交由人工智能計算不同狀況的反應。當人工智能的神經元網絡 (neural network) 找出通往改良交通狀況的方法或捷徑,研究團隊便會予以獎勵,相反如人工智能的演算法導致車輛在交通燈前完全停止則給予懲罰。而在人工智能學習的過程中,系統會從一隊車隊中收集到的互動數據,估算交通燈的變化,從而控制無人駕駛汽車的行駛速度,盡量增加綠燈時通過的車輛數目,同時避免汽車因紅燈而需要完全停止。

    研究結果顯示,經最佳演算法下控制的無人駕駛汽車,其通過交通燈的流暢度大增,而即使受控制的汽車減低至 75%,其餘為人類操控車輛,交通流暢度仍能獲得顯著的改善。由於所有汽車均能減少非必要的加速或停車空轉,因此研究還可有效改善能源消耗及廢氣排放。不過,現時研究正在起步階段,而且只能應付一個十字路口位,要全面實行還須更多研究,但相信在智慧城市的帶動下,無人駕駛汽車將能更容易採集交通數據,應用團隊研究成果的可能性將相當高。

    資料來源:https://bit.ly/3NqCJmD

    相關文章:【上帝視角】樹木觸電引發山火 人工智能預測剪樹時機
    https://www.wepro180.com/fire220531/

    #AI #autonomus #DeepReinforcement #MachineLearning #MIT #人工智能 #機器學習 #深度強化學習 #無人駕駛汽車 #能源效益

    相關文章